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Abstract
We connect two alternative concepts of solving integrable models, Baxter’s
method of auxiliary matrices (or Q-operators) and the algebraic Bethe ansatz.
The main steps of the calculation are performed in a general setting and a
formula for the Bethe eigenvalues of the Q-operator is derived. A proof is
given for states which contain up to three Bethe roots. Further evidence is
provided by relating the findings to the six-vertex fusion hierarchy. For the
XXZ spin-chain we analyse the cases when the deformation parameter of the
underlying quantum group is evaluated both at and away from a root of unity.

PACS numbers: 05.50.+q, 02.20.Uw, 02.30.Ik

1. Introduction

This paper is a continuation of two previous works [1, 2] on the six-vertex model and the
associated XXZ Heisenberg spin-chain at roots of unity. That is, we consider the integrable
model defined via the Hamiltonian

H =
M∑

m=1

σ +
mσ−

m+1 + σ−
m σ +

m+1 +
q + q−1

4
σ z

mσ z
m+1 σ±

M+1 ≡ λ±2σ±
1 σ z

M+1 ≡ σ z
1 . (1)

Here {σx, σ y, σ z} are the Pauli matrices with σ± = (σ x ± iσy)/2 and λ ∈ C fixes the
boundary conditions. The anisotropy parameter in front of the third term in (1) is fixed in
terms of the complex variable q. Of particular interest to our discussion is the case when
q is a primitive root of unity, i.e. qN = 1 for some integer N > 2 (we exclude here the
cases N = 1, 2 which are related to the XXX model). At these particular values the above
Hamiltonian and the associated six-vertex transfer matrix exhibit extra degeneracies in their
spectra which are linked to an underlying infinite-dimensional non-Abelian symmetry algebra.
At periodic boundary conditions, λ = 1, and in the commensurate sectors 2Sz = 0 mod N this
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symmetry algebra is isomorphic to the loop algebra of sl2. This has been first established by
Deguchi et al in [3], where additional results for N = 3, 4 outside the commensurate sectors
can be found. When λ �= 1 the symmetry algebra will in general reduce to the upper or lower
Borel subalgebra [4, 5]. A special case is obtained when the boundary conditions are tuned to
λ = q±Sz

. Then the symmetry algebra and the explicit form of its generators are known for
all spin sectors and integers N [5].

The presence of a non-Abelian symmetry algebra is of interest as it now allows one to
connect the Bethe ansatz and representation theory. Note that while this idea is not new,
the mentioned symmetries are infinite dimensional and exist at finite length of the chain,
M < ∞. The combination of these two distinct features distinguishes the present discussion
from previously considered cases in the literature at open boundary conditions [6] or at infinite
volume [7].

An important first step in connecting the Bethe ansatz with the representation theory of
the aforementioned symmetry algebras is to find an efficient way to analyse the structure
of the degenerate eigenspaces of the Hamiltonian as well as the transfer matrix. This can
be achieved by using Baxter’s concept of auxiliary matrices [8], also known as Q-operators,
which satisfy certain operator functional equations with the transfer matrix. The concept of
auxiliary matrices has primarily received attention in the context with the eight-vertex model
[9–12]; see [13, 14] for a recent discussion corresponding to the root of unity case.

In connection with the six-vertex model the subject has obtained fresh impetus from
new methods of constructing such Q-operators which provide an alternative to Baxter’s
procedure described in, e.g., [15]. These new methods are based on the representation
theory of quantum groups [16–19, 1]. The latter method will be of importance to us as the
auxiliary matrices constructed in this manner, see [1, 2], have been shown for several examples
to yield information on the irreducible representations of the symmetry algebra at roots of
unity. Several facts about the spectrum of the auxiliary matrices in [2] have so far only been
rigorously proved for N = 3 and conjectured to hold true for N > 3 employing numerical
calculations.

The purpose of this paper is to lend further support to the earlier conjectures and to
extend the discussion from auxiliary matrices with periodic boundary conditions (λ = 1) to
quasi-periodic ones (λ �= 1) in order to accommodate the findings in [5]. To this end we take
a broader point of view and consider the connection between the algebraic Bethe ansatz [20]
and auxiliary matrices in a general setting and at generic values of q.

Away from a root of unity this will enable us to calculate the spectrum of the auxiliary
matrices constructed in [19] and resolve certain convergence problems due to an infinite-
dimensional auxiliary space. We will also make contact with the discussion in [17].

At roots of unity [1, 2] the Bethe ansatz analysis will not yield the complete set of
eigenvalues for the Q-operators, as at most the highest weight state in each degenerate
eigenspace of the transfer matrix ought to be a proper Bethe state, i.e. a state parametrized by
finite solutions of the Bethe ansatz equations. Detailed explanations will be given in the text.
In addition to the comparison with the algebraic Bethe ansatz we will also make contact with
the fusion hierarchy of the six-vertex model. The latter provides an infinite series of higher-
spin transfer matrices which can successively be generated through a functional equation. At
roots of unity this series truncates and we will show how the auxiliary matrices are related
to the fusion matrices, similar to the discussion in [14] for the eight-vertex model. This will
provide additional evidence for the spectrum of the auxiliary matrices constructed in [1, 2].

The paper is organized as follows. In section 2 we introduce the monodromy matrices of
the six-vertex transfer matrix and the Q-operators constructed in [19, 1, 2]. Afterwards we
derive the commutation relations between the auxiliary matrices and the Yang–Baxter algebra.
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This sets the stage to compute the action of the auxiliary matrices on Bethe states in
section 3. We will find that they are eigenstates of the auxiliary matrices and compute
the corresponding eigenvalues. This is done without specifying the quantum space. The
computations are quite lengthy and cumbersome whence we will only give a proof for Bethe
states which contain up to three Bethe roots. For the general case of an arbitrary number of
Bethe roots we formulate a conjecture.

In section 4 we specialize our findings to the XXZ spin-chain. While we discuss both q
being a root of unity and q not being a root of unity, the former case is considered in more
detail in light of the aforementioned symmetries. We check the conjectured formula for the
eigenvalues of the Q-operators for consistency by inserting them into the respective functional
equation with the transfer matrix.

In section 5 we present further support for the conjecture regarding the spectrum of the
auxiliary matrices by showing that the eigenvalues are also consistent with the fusion hierarchy
of the six-vertex model. The fusion hierarchy is solved explicitly in terms of Bethe roots and
we derive its ‘truncation’ at roots of unity.

Section 6 contains the conclusions.

2. Monodromy matrices

The first step in the application of the algebraic Bethe ansatz is the definition of the monodromy
matrices. The monodromy matrices act on a tensor product of two spaces, H0 ⊗ H; the first
is called the auxiliary space and the second the quantum space. Depending on the choice of
the auxiliary space we obtain the monodromy matrices for the Q-operator and the six-vertex
transfer matrix. Since the monodromy matrices are subject to the Yang–Baxter equation
they can be constructed in the framework of quantum groups. Let {ei, fi, q

hi }i=0,1 be the
Chevalley–Serre generators of the quantum loop algebra Uq(s̃l2) subject to the relations

qhi ej q
−hi = qAij ej qhi fjq

−hi = q−Aij fj qhi qhj = qhj qhi i, j = 0, 1 (2)

where the Cartan matrix reads

A =
(

2 −2
−2 2

)
.

We will only be dealing with representations where the central charge of the affine extension
is zero, whence we set

h ≡ h1 = −h0. (3)

In addition, for i �= j the Chevalley–Serre relations hold,

e3
i ej − [3]qe

2
i ej ei + [3]qeiej e

2
i − ej e

3
i = 0

(4)
f 3

i fj − [3]qf
2
i fjfi + [3]qfifjf

2
i − fjf

3
i = 0.

The quantum algebra can be made into a Hopf algebra, its most important property being that
of a coproduct which we choose to be (i = 0, 1)

�(ei) = 1 ⊗ ei + qhi ⊗ ei �(fi) = fi ⊗ q−hi + 1 ⊗ fi �(qhi ) = qhi ⊗ qhi . (5)

The opposite coproduct �op is obtained by permuting the two factors. If the deformation
parameter q is considered to be an abstract indeterminate there exists the universal R-matrix
intertwining these two coproduct structures

R�(x) = �op(x)R x ∈ Uq(s̃l2) R ∈ Uq(b+) ⊗ Uq(b−). (6)
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Here Uq(b±) denote the upper and lower Borel subalgebra, respectively. We now define the
six-vertex monodromy matrix by setting

T(z) = (
π(1)

z ⊗ πH
)
λh⊗1R ∈ End C

2 ⊗ H (7)

with π(1)
z : Uq(s̃l2) → End C

2 being the fundamental evaluation representation given in terms
of Pauli matrices,

π(1)
z (e0) = zσ− π(1)

z (f0) = z−1σ + π(1)
z (qh0) = q−σ z

(8)
π(1)

z (e1) = σ + π(1)
z (f1) = σ− π(1)

z (qh1) = qσz

.

We will denote the basis in the corresponding representation space C
2 by {|0〉, |1〉}. The

representation πH in the second factor determines the quantum space of our theory. At the
moment we leave it unspecified in order to emphasize the general nature of the following
discussion. Later we will set H = (C2)⊗M and πH = ⊗M

m=1π
(1)
ζm

in order to obtain the
inhomogeneous XXZ spin-chain. The factor in front of the universal R-matrix involving λ

fixes the boundary conditions.
In the context of the algebraic Bethe ansatz it is customary to decompose the monodromy

matrix w.r.t. the auxiliary space C
2, i.e. one introduces the following elements of EndH:

A = 〈0|T|0〉
C

2 B = 〈0|T|1〉
C

2 C = 〈1|T|0〉
C

2 D = 〈1|T|1〉
C

2 . (9)

Here the subscript C
2 indicates that the matrix elements are taken w.r.t. the first factor in

(7). These elements obey the familiar commutation relations of the six-vertex Yang–Baxter
algebra which are deduced from the relation

R12(w/z)T1(w)T2(z) = T2(z)T1(w)R12(w/z) (10)

with

R(z, q) = a + b

2
1 ⊗ 1 +

a − b

2
σ z ⊗ σ z + cσ + ⊗ σ− + c′σ− ⊗ σ + (11)

denoting the six-vertex R-matrix. The parametrization of the Boltzmann weights is chosen in
accordance with (5) and (8),

a = 1 b = 1 − z

1 − zq2
q c = 1 − q2

1 − zq2
c′ = cz. (12)

We next define the monodromy matrix from which we will obtain below the auxiliary
matrix or Q-operator. We follow an analogous procedure to that just given with the difference
that we now change to a higher-dimensional auxiliary space H0 belonging to a suitably chosen
representation π ′

w : Uq(b+) → EndH0. The auxiliary space H0 will turn out to be finite
dimensional at qN = 1 and infinite dimensional when q is not a root of unity. The monodromy
matrix is now

Q(w) = (π ′
w ⊗ πH)λh⊗1R ∈ EndH0 ⊗ H. (13)

At roots of unity there arises a technical subtlety. The universal R-matrix need not exist as
whether one can construct an intertwiner depends on the precise nature of the representations
π ′

w, πH. This is due to the enlarged centre of the quantum group at roots of unity, see e.g.
[21]. However, we will assume that the representations are always chosen such that this is the
case. Then the definition (13) has to be replaced by this intertwiner which is to be explicitly
constructed. (In the case of the monodromy matrix (7) one can first evaluate it away from a
root of unity and then safely take the root of unity limit.)

Similar to the six-vertex monodromy matrix we may also decompose (13) over the
auxiliary space,

Q = (Qij ) with Qij := 〈i|Q|j 〉H0
∈ EndH (14)



Auxiliary matrices for the six-vertex model and the algebraic Bethe ansatz 7231

where the states are labelled by integers lying in a finite interval, 0 � i, j � N ′ −1, at roots of
unity qN ′ = ±1 or in an infinite interval i, j ∈ Z when qN ′ �= ±1. Here and in the following
we set N ′ = N if the order of the root of unity is odd and N ′ = N/2 when it is even.

We will specify the respective auxiliary spaces momentarily. Before doing so we introduce
a third operator L ∈ EndH0 ⊗C

2 which intertwines the tensor product π ′
w ⊗π(1)

z and satisfies
together with the monodromy matrices (7) and (13) the Yang–Baxter equation, i.e.

L12(w/z)Q1(w)T2(z) = T2(z)Q1(w)L12(w/z). (15)

Here we have assumed that we are only allowing for representations π ′
w in (13) for which

[L(w), π ′
w(h) ⊗ 1 + 1 ⊗ σ z] = 0. (16)

This restriction is necessary in order to accommodate the quasi-periodic boundary conditions
when λ �= 1. Again, we decompose the L-operator, this time over the second factor, the
two-dimensional space associated with the evaluation representation π(1)

z ,

L =
(

α β

γ δ

)
α, β, γ, δ ∈ EndH0. (17)

We shall now explicitly specify the evaluation representations π ′
w at and away from a root of

unity as well as the matrix elements of the L-operator within these representations.

2.1. The auxiliary space when qN = 1

We adopt the conventions in [2] and define the following evaluation representation π ′
w ≡ πµ

w

of the full affine quantum algebra Uq(s̃l2) at qN = 1 or equivalently qN ′ = ±1. Let
0 � n � N ′ − 1, µ ∈ C and set

πµ
w(f1)|n〉 = |n + 1〉 πµ

w(f1)|N ′ − 1〉 = 0 πµ
w(e0) = wπµ

w(f1)

πµ
w(e1)|n〉 = µ + µ−1 − µq2n − µ−1q−2n

(q − q−1)2
|n − 1〉 πµ

w(f0) = w−1πµ
w(e1) (18)

πµ
w(qh1)|n〉 = µ−1q−2n−1|n〉 πµ

w(qh0) = πµ
w(q−h1).

The non-vanishing matrix elements of the L-operator then read [1]

αn = 〈n|α|n〉 = (w/z)µ− 1
2 q−n+ 1

2 − µ
1
2 qn+ 1

2

δn = 〈n|δ|n〉 = (w/z)µ
1
2 qn+ 3

2 − µ− 1
2 q−n− 1

2

(19)

γn = 〈n|γ|n + 1〉 = µ
1
2 qn+ 3

2
µ + µ−1 − µq2n+2 − µ−1q−2n−2

q − q−1
n < N ′ − 1

βn = 〈n|β|n − 1〉 = (w/z)(q − q−1)µ− 1
2 q−n+ 1

2 n > 0.

Note that this representation can be extended to generic q but is then infinite dimensional, i.e.
n ∈ Z�0. The reason for this particular choice of the representation is explained in [1, 2].
Here we simply recall that the following exact sequence holds [1]:

0 → π
µq

w′
ı

↪→ πµ
w ⊗ π(1)

z

τ→ π
µq−1

w′′ → 0 w = w′q−1 = w′′q = z/µ (20)

with the inclusion ı and the projection τ detailed in [1] (cf section 4.1 and 4.2). From this
decomposition of the tensor product one now derives a functional equation of the following
type:

T (z)Qµ(w) = φ1(z)Qµq(w
′) + φ2(z)Qµq−1(w′′) (21)
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where

T = (
Tr
π

(1)
z

⊗1H
)
T = A + D and Qµ = (

Tr
π

µ
w

⊗1H
)
Q =

N ′∑
n=0

Qnn. (22)

Here φ1, φ2 are some coefficient functions whose precise form depends on the choice of the
quantum space H which is as yet unspecified. For the XXZ spin-chain we will present them
below.

2.2. Infinite-dimensional auxiliary space for qN �= 1

Rossi and Weston introduced in [19] the following infinite-dimensional four-parameter
representation π+ = π+(w; s0, s1, s2) of the upper Borel subalgebra Uq(b+):

π+(e1)|n〉 = |n − 1〉 π+(qh1)|n〉 = s0q
−2n|n〉 π+(qh0) = π+(q−h1)

(23)

π+(e0)|n〉 =
(

s1s2
(q − q−1)2

w
+

w

(q − q−1)2
+ s1q

2n + s2q
−2n

)
|n + 1〉.

Here n ∈ Z and the representation space is thus infinite dimensional. For convenience we
rescale the parameters according to

s1,2 → r1,2 = −(q − q−1)2w−1s1,2 s0 → r0 = s0. (24)

The matrix elements for the intertwiner L are now calculated to be [19]

αn = 〈n|α|n〉 = (w/z)r2r
− 1

2
0 q−n+2 − r

− 1
2

0 qn

δn = 〈n|δ|n〉 = (w/z)r1r
1
2

0 qn − r
1
2

0 q−n

(25)
γn = 〈n|γ|n + 1〉 = (q − q−1)r

− 1
2

0 qn+1

βn = 〈n|β|n − 1〉 = (w/z)r
1
2

0 q−n+1 r1r2 + 1 − r1q
2n−2 − r2q

−2n+2

q − q−1
.

Similar to the root of unity case one has a decomposition of the tensor product π+ ⊗ π(1)
z

according to the exact sequence [19]

0 → π+(wq2; r+)
ı

↪→ π+(w; r) ⊗ π(1)
z

τ→ π+(wq−2; r−) → 0 w = z (26)

with

r = (r0, r1, r2) and r± = (r0q
±1, r1q

∓2, r2). (27)

The inclusion and projection maps now are [19]

ı|n〉+ = r0
q−2n+1 − r1q

−1

q − q−1
|n〉 ⊗ |0〉 + |n − 1〉 ⊗ |1〉 and τ |n + 1〉 ⊗ |0〉 = |n〉−.

Again this representation theoretic fact is the platform for deriving a functional equation of
the type

T (z)Q(z; r) = ψ1(z)Q(z; r+) + ψ2(z)Q(z; r−) (28)

where one now has

Q(w; r) = (
Tr

π+(w;r)
⊗1H

)
Q =

∞∑
n=−∞

Qnn. (29)

The reader will have noted that the sum in the definition of the auxiliary matrix is now infinite.
In fact, this can cause convergence problems. From a mathematical point of view one should
therefore treat q as an abstract indeterminate (rather than a complex number) and view the
matrix elements of (29) as formal power series in q. We will return to this point later when
we calculate the spectrum of (29). (See also the discussion in [19].)
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2.3. Commutation relations with the Yang–Baxter algebra

Having specified explicitly the matrix elements of the intertwiner (17) at and away from a root
of unity we can exploit the Yang–Baxter equation (15) in order to derive the commutation
relations of the matrix elements (14) with the generators (9) of the Yang–Baxter algebra. One
finds

αkQklA = αlAQkl + γl−1BQkl−1 − βkQk−1lC (30)

αkQklB = δlBQkl + βl+1AQkl+1 − βkQk−1lD (31)

δkQklC = αlCQkl + γl−1DQkl−1 − γkQk+1lA (32)

δkQklD = δlDQkl + βl+1CQkl+1 − γkQk+1lB. (33)

Here we have suppressed the dependence on the spectral variables in the notation which for
say the second identity is explicitly given by

Qkl(w)B(z) = δl(w/z)

αk(w/z)
B(z)Qkl(w) +

βl+1(w/z)

αk(w/z)
A(z)Qkl+1(w) − βk(w/z)

αk(w/z)
Qk−1l(w)D(z).

Depending on the type of representation determining the auxiliary space of Q there are different
boundary conditions. For example, if qN ′ = ±1 then

β0 = 0 ⇒ α0Q0lB = δlBQ0l + βl+1AQ0l+1

βN ′ = 0 ⇒ αkQkN ′−1B = δN ′−1BQkN ′−1 − βkQk−1N ′−1D.

Away from a root of unity the auxiliary space is infinite dimensional and there are no boundary
conditions.

Note at this point the difference in the alternative construction procedures for auxiliary
matrices. In order to obtain an auxiliary matrix which commutes with the transfer matrix
we used the concept of intertwiners leading to (15). The latter implies the commutator
[T (z),Q(w)] = 0 which corresponds to the following non-trivial equation in terms of the
Yang–Baxter algebra:∑

k

(
γk−1

αk

BQkk−1 − γk

δk

Qk+1kB

)
=

∑
k

(
βk

αk

Qk−1kC − βk+1

δk

CQkk+1

)
. (34)

In contrast Baxter’s method described, e.g., in [15] relies on the ‘pair propagation through a
vertex’ property to construct an auxiliary matrix which commutes with T. The relation (15),
which is the key to relating the Yang–Baxter algebra (9) with the matrix elements (14), is
missing in Baxter’s approach.

3. Action on Bethe states

Since the transfer matrix and the Q-operators commute, they must allow for a common set of
eigenstates. This motivates us to compute the action of the Q-operator on the Bethe eigenstates
of the transfer matrix, i.e. we now make the crucial assumption that the quantum space H
contains a vector |0〉H, called the pseudo-vacuum, which satisfies

A|0〉H = |0〉H〈0|A|0〉H C|0〉H = 0 D|0〉H = |0〉H〈0|D|0〉H (35)

and

Qkk|0〉H = |0〉H〈0|Qkk|0〉H Qjk|0〉H = 0 j > k. (36)
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In fact, when the quantum space H carries a representation πH of the quantum group Uq(s̃l2)

or Uq(b−) this pseudo-vacuum is identified with a (unique) highest weight vector. The above
properties then follow from the intertwining property (6) of the monodromy matrices. For
instance, one has for Q that

[Q, π ′
w(qh) ⊗ πH(qh)] = 0 ⇒ πH(qh)QjkπH(q−h) = q2(j−k)Qjk

which then implies (36) by exploiting the fact that |0〉H is highest weight.
We now define a ‘proper’ Bethe eigenstate as a vector of the form∣∣z1, . . . , znB

〉
H =

nB∏
j=1

B(zj )|0〉H (37)

where the parameters zj = zj (q, λ) are finite solutions to the ‘generalized’ Bethe ansatz
equations

〈0|A(zi)|0〉HqnB PB(ziq
−2) + 〈0|D(zi)|0〉Hq−nB PB(ziq

2) = 0. (38)

Here we have introduced for convenience the ‘Bethe polynomial’

PB(z) =
nB∏

j=1

(1 − z/zj ) with zj = zj (q, λ). (39)

This set of coupled nonlinear equations is sufficient to guarantee that the Bethe states (37) are
indeed eigenstates of the transfer matrix T = A + D. The proof follows the same lines as the
well-known computation for the XXZ spin-chain [20]:

T (z) = 〈0|A(z)|0〉HqnB
PB(zq−2)

PB(z)
+ 〈0|D(z)|0〉Hq−nB

PB(zq2)

PB(z)
. (40)

We restrict ourselves to finite solutions of the Bethe ansatz equations (38) in order to take
into account certain peculiarities which can occur at roots of unity. Some of the finite Bethe
roots zj at qN ′ �= ±1 can tend to zero or infinity when the root of unity limit is taken. In this
limit it might also occur that a subset of Bethe roots

{
zi�

}
�∈ZN ′ forms a complete string,

lim
q ′→q

∏
�∈ZN ′

(
z − zi� (q

′)
) =

∏
�∈ZN ′

(
z − zi0(q)q2�

) = zN ′ − zi0(q)N
′

qN ′ = ±1 (41)

and so drops out of equation (38) [22]. In terms of the Yang–Baxter algebra the occurrence of
a complete string corresponds to the vanishing of the following operator product:

lim
q ′→q

∏
�∈ZN ′

B
(
zi� (q

′)
) = 0 qN ′ = ±1. (42)

Hence, the Bethe states (37) evaluated at a root of unity might not yield a complete set of
eigenstates. Moreover, the fact that the transfer matrix and the Q-operator possess a common
set of eigenvectors does not necessarily imply that the Bethe states are also eigenstates of the
Q-operator when degeneracies are present. This is precisely the case when qN ′ = ±1. For
instance, in [1], auxiliary matrices have been constructed for the six-vertex model at roots of
unity which do not preserve the total spin and whose eigenstates therefore are different from
the Bethe states. We will return to this discussion when we specialize our general set-up to
the XXZ spin-chain. For the moment we keep the calculation as general as possible.

Let us start with the simplest case, only one ‘Bethe root’ is present. That is, we evaluate
the B operator at solutions z0 to the equation

〈0|A(z0)|0〉H = 〈0|D(z0)|0〉H. (43)
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In order to compute the action of the Q-operator on the corresponding eigenstate of the transfer
matrix we use the relation

QklB =
(

δl

αk

− βl+1γl

αkαl+1

)
BQkl +

βl+1

αl+1
Qkl+1A − βk

αk

Qk−1lD +
βl+1βk

αl+1αk

Qk−1l+1C (44)

which follows from the identities (30), (31). Note that if k = l all the rightmost operators
on the right-hand side of the above equation possess the pseudo-vacuum as an eigenvector.
Taking the trace in (44) we obtain (the boundary terms work out correctly if qN ′ = ±1)∑

k

QkkB = B
∑

k

(
δk

αk

− βk+1γk

αkαk+1

)
Qkk

+
∑

k

βk

αk

Qk−1k(A − D) +
∑

k

βk+1βk

αkαk+1
Qk−1k+1C.

When acting on the pseudo-vacuum the second and third terms on the RHS of the equation
vanish, which leaves us with the eigenvalue

Q(w)B(z0)|0〉H =
{∑

k

(
δk

αk

− βk+1γk

αkαk+1

)
〈0|Qkk|0〉H

}
B(z0)|0〉H. (45)

Here the sum runs over ZN ′ when qN ′ = ±1 and over Z when q is not a root of unity. The
calculation for Bethe states with multiple Bethe roots follows the same logic, though it is now
much more involved to show that all the ‘unwanted’ terms vanish due to the Bethe ansatz
equations; see the appendix.

3.1. Conjecture

For a Bethe state with nB Bethe roots we conjecture the following formula for the eigenvalues
of the respective auxiliary matrices:

Q(w)

nB∏
j=1

B(zj )|0〉H =
{∑

k

〈0|Qkk(w)|0〉H

×
nB∏

j=1

(
δk(w/zj )

αk(w/zj )
− βk+1(w/zj )γk(w/zj )

αk(w/zj )αk+1(w/zj )

)}
nB∏
j=1

B(zj )|0〉H. (46)

Note that the particular choice of the quantum space only enters via the pseudo-vacuum
expectation value 〈0|Qkk|0〉H and the Bethe roots {zj }nB

j=1. The combination of matrix elements
appearing in the product of the eigenvalue expression only depends on the auxiliary space.
The above conjecture can be verified for states with nB = 2, 3 by employing the intermediate
steps detailed in the appendix. For nB > 3 we will provide further support by showing that
the eigenvalues satisfy the functional equations (21) and (28), respectively. For this purpose
we need to determine the coefficient functions in (21) and (28) first. The latter depend on the
choice of the quantum space and we now specialize in the XXZ spin-chain.

4. The XXZ spin-chain

As remarked upon earlier, one chooses for the familiar case of the inhomogeneous six-vertex
model or XXZ spin-chain with quasi-periodic boundary conditions,

πH =
M⊗

m=1

π
(1)
ζm

and H = (C2)⊗M. (47)
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Here {ζm} are some complex inhomogeneity parameters. The transfer and auxiliary matrix
can then be written as the trace of an operator product

T (z) = Tr
π

(1)
z

λσ z⊗1R0M(z/ζM) · · · R01(z/ζ1) (48)

and

Q(w) = Tr
π ′

w

λπ ′
w(h)⊗1L0M(w/ζM) · · · L01(w/ζ1). (49)

Here R and L are the R-matrix and the L-operator specified earlier. Note again the difference in
Baxter’s construction procedure [15]. His final Q, which commutes with the transfer matrix,
is in general not of this simple form. For the pseudo-vacuum and the associated ‘expectation
values’ one finds

|0〉H = |0〉
C

2 ⊗ · · · ⊗ |0〉
C

2 〈0|A|0〉H = λ 〈0|D|0〉H = λ−1qM

M∏
m=1

z − ζm

zq2 − ζm

(50)

and

〈0|Q(w)|0〉H = λπ ′
w(h′)⊗1

M∏
m=1

α(w/ζm) ⇒ Qnn|0〉H = λ−2n

M∏
m=1

αn(w/ζm)|0〉H. (51)

Here we have slightly modified our earlier conventions. Instead of taking the Cartan generator
h in the exponent of the twist parameter, we introduced for convenience h′ which in the two
representations (18) and (23) is given by

πµ
w(h′)|n〉 = −2n|n〉 and π+(h′)|n〉 = −2n|n〉. (52)

This simply amounts to a renormalization of the respective auxiliary matrices by an overall
factor. We continue to treat the two cases of q being a root of unity and q not being a root of
unity separately.

4.1. Roots of unity

When qN ′ = ±1, the auxiliary space is finite and upon inserting expressions (19) into the
conjectures formula (46) one obtains

〈0|Qnn(w)|0〉H = λ−2nµ
M
2 qMn+ M

2

M∏
m=1

(wµ−1q−2n/ζm − 1) (53)

and

Qµ(w)

nB∏
j=1

B(zj )|0〉H =
{

qSz

µSz

PB(wµ)PB(wµ−1)
∑

k∈ZN ′

× λ−2kq2kSz ∏M
m=1(wµ−1q−2k/ζm − 1)

PB(wµ−1q−2k)PB(wµ−1q−2k−2)

}
nB∏

j=1

B(zj )|0〉H. (54)

Here we have used the relation between total spin and the number of Bethe roots, 2Sz =
M −2nB . We emphasize that the Bethe roots zj are assumed to be finite solutions to the Bethe
ansatz equations at a root of unity. This is different from the polynomial which is obtained by
solving the Bethe ansatz equations away from a root of unity and then taking the root of unity
limit. As pointed out before, in this limit one might encounter vanishing or infinite Bethe roots
as well as complete strings. Before we investigate these issues we first check the eigenvalues
of the auxiliary matrix for consistency by making contact with the functional equation (21).
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4.1.1. The TQ-equation. Along the same lines as detailed in section 5 of [1] for the case of
periodic boundary conditions (see equations (111) and (112) therein), one now calculates for
the twisted inhomogeneous XXZ spin-chain the following coefficient functions in (21):

T (z)Qµ(z/µ) = λ−1q
M
2

(
M∏

m=1

z − ζm

zq2 − ζm

)
Qµq(zq/µ) + λq

M
2 Qµq−1(zq−1/µ). (55)

Here use has been made of the explicit form of the inclusion and projection map detailed in
equations (88), (89) and (99), (100) of [1], respectively. Employing the known expression
(40) for the eigenvalues of the transfer matrix within the framework of the algebraic Bethe
ansatz [20],

T (z) = λqnB
PB(zq−2)

PB(z)
+ λ−1

(
M∏

m=1

z − ζm

zq2 − ζm

)
qM−nB

PB(zq2)

PB(z)
(56)

one verifies that the conjectured eigenvalues of the auxiliary matrix satisfy (55). Note that we
have implicitly made the assumption that all Q-matrices in (55) commute with each other. For
λ = 1 this has been proved in [1]. Using the explicit form of the intertwiners employed in this
proof one verifies that the same holds true for quasi-periodic boundary conditions as long as
λN = 1. This is sufficient to cover the symmetries investigated in [5].

4.1.2. The degeneracies at roots of unity qN ′ = ±1. Recall from [3, 5] that due to the loop
symmetry at a root of unity qN ′ = ±1 the eigenspaces of the transfer matrix are organized into
multiplets containing states whose total spin Sz varies by multiples of N ′. The Bethe states
(37) with finite Bethe roots are assumed to correspond to the highest weight states in such
multiplets, i.e. acting with the generators of the respective symmetry algebra on this state one
successively obtains the whole degenerate eigenspace of the transfer matrix (see [23, 24, 2]
for examples of the highest weight property). The states within a degenerate multiplet are not
of the form (37), whence our result (54) only applies to the highest weight vectors containing
finite Bethe roots. Therefore, it does not yield the complete spectrum of the auxiliary matrices
Qµ. We now compare for these highest weight states the identity (54) with the formulae (11)
and (19) in [2] which have been proved for N = 3 using functional relations and conjectured
to hold true for N > 3 based on numerical data.

Recall from [2] that the eigenvalues of the auxiliary matrices Qµ for the homogeneous
chain, {ζm = 1}Mm=1, and periodic boundary conditions, λ = 1, were shown to be of the
following general form (see formulae (11) and (19) in [2]):

Qµ(w = z/µ) = Nµzn̄∞PB(z)PB(zµ−2)PS(z
N ′

, µ2N ′
). (57)

In order to match our result (54) from the algebraic Bethe ansatz computation with the formulae
(11) and (19) in [2] we have to identify

Nµ=1PS(z
N ′

, µ = 1) = Nµ=1

nS∏
j=1

(1 − zN ′
/aj ) = qSz

∑
k∈ZN ′

q2kSz

(zq−2k − 1)M

PB(zq−2k)PB(zq−2k−2)
. (58)

Note that in our derivation of (54) we have assumed infinite and vanishing Bethe roots to be
absent. Thus, we have to set n̄∞ = 0 in formula (19) of [2]. Numerical evidence suggests
that this is only true in the commensurate sectors 2Sz = 0 mod N . One then finds for N = 3
agreement between the results in [2] and our present calculation up to a trivial redefinition of
the normalization constant Nµ. Recall from the discussion in [2] that the rational function (58)
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is in fact a polynomial1 in the variable zN ′
whose roots aj contain all the essential information

on the irreducible representation of the loop algebra spanning the degenerate eigenspaces of
the transfer matrix. The reader is referred to [2] for details.

In contrast to the transfer matrix the auxiliary matrices Qµ stay non-degenerate and in
addition to the eigenvalues corresponding to the highest weight state one also needs to compute
the remaining eigenvalues of the auxiliary matrix within the multiplet. The examples explicitly
worked out for N = 3 and M = 5, 6, 8 in [2] suggest the following picture:

Set λ = 1, {ζm = 1}Mm=1 and assume we have a multiplet in a commensurate sector, i.e. the
highest weight state has spin 2Sz = 0 mod N . Then the form of the eigenvalue (54) remains
the same except for a change in the µ-dependence of the polynomial (58). The examples in
[2] showed that this polynomial changes within the multiplet according to the following rule:

Sz: PS(z
N ′

, µ2N ′
) =

nS∏
j=1

(1 − zN ′
µ−2N ′

/aj ) (highest weight state)

Sz − N ′: PS(z
N ′

, µ2N ′
) = (1 − zN ′

/a1)

nS∏
j=2

(1 − zN ′
µ−2N ′

/aj )

Sz − 2N ′: PS(z
N ′

, µ2N ′
) = (1 − zN ′

/a1)(1 − zN ′
/a2)

nS∏
j=3

(1 − zN ′
µ−2N ′

/aj )

...

−Sz: PS(z
N ′

) =
nS∏

j=1

(1 − zN ′
/aj ) (lowest weight state).

That is, as one steps through the multiplet the polynomial (58) successively looses factors of
µ−2N ′

until one reaches the lowest weight state, where it does not contain any µ-factor. We
can confirm this picture by computing the eigenvalue corresponding to the lowest weight state.
Invoking the transformation of the auxiliary matrix under spin reversal R = ∏M

m=1 σx
m one

finds (cf formula (39) in [2]),

Qµ(w = z/µ)

nB∏
j=1

C(zj )R|0〉H = const × RQµ−1(w = z/µ)

nB∏
j=1

B(zj )|0〉H

=
q−Sz

µSz

PB(z)PB(zµ−2)
∑

k∈ZN ′

λ−2kq2kSz

∏M
m=1(zq

−2k/ζm − 1)

PB(zq−2k)PB(zq−2k−2)


nB∏

j=1

C(zj )R|0〉H.

In accordance with the picture outlined before, the sum yielding the polynomial PS is now
independent of the parameter µ.

4.1.3. Infinite and vanishing Bethe roots. Besides the missing states within a degenerate
multiplet of the transfer matrix, we are also missing those states which contain infinite or
vanishing Bethe roots in the root of unity limit. A concrete example for the homogeneous
chain, i.e. {ζm = 1}Mm=1, is given by setting M = 5, Sz = 1/2 and considering the subspace

1 We briefly recall the argument for N odd. First, note that the Bethe ansatz equations (38) ensure that the rational
function (58) is pole free in z. Hence, it must be a polynomial in z. Secondly, the function (58) is obviously invariant
under the replacement z → zq2. Thus, any zero z′ �= 0 occurs inside a string {z′q2�}�∈ZN ′ and gives rise to a factor

(zN ′ − z′N ′
) in the root decomposition of the polynomial.
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of momentum P = 0. There one finds for 2� = q ′ + q ′−1 with q ′ not a root of unity the
following Bethe roots:

b1 = b−1
2 = 1

4

(
1 + � −

√
5 + �(� − 2) +

√(
1 + � −

√
5 + �(� − 2)

)2 − 16

)
.

Here we have temporarily introduced the parametrization bi = q ′(1−zi)/(1−ziq
′2) in order to

accommodate the occurrence of infinite roots. Taking the root of unity limit q ′ → q = e2π i/3

one now computes

lim
q ′→q

T (z) = 1 +

(
q(1 − z)

1 − zq2

)5

lim
q ′→q

b1 = lim
q ′→q

b−1
2 = e2π i/3 = q z1 = 0 z2 = ∞.

Therefore, the finite solutions to the Bethe ansatz equations do not give a complete set of
eigenstates at roots of unity. Note that it might even happen that the highest weight state in a
multiplet contains infinite or vanishing Bethe roots.

4.2. The case when q is not a root of unity

A priori one might expect that things are now simpler than the root of unity case as the
only degeneracies which occur in the spectrum of the transfer matrix are due to spin-reversal
symmetry. However, the auxiliary space is now infinite and one has to deal with potential
convergence problems when taking the trace in (29). This becomes evident if we insert
expressions (25) into the conjectured formula for the eigenvalue expression of the auxiliary
matrix. One obtains for the pseudo-vacuum expectation value

〈0|Qnn(w)|0〉H = λ−2n

M∏
m=1

αn(w/ζm) = λ−2nr
− M

2
0 qn M

2

M∏
m=1

(wr2q
−2n+2/ζm − 1) (59)

and the action of the auxiliary matrix on a Bethe state produces

Q(z; r0, r1, r2)

nB∏
j=1

B(zj )|0〉H =
{

r−Sz

0 PB(z)PB(zr1r2)

×
∑
�∈Z

λ−2�q2�Sz ∏M
m=1(zr2q

−2�+2/ζm − 1)

PB(zr2q−2�+2)PB(zr2q−2�)

}
nB∏
j=1

B(zj )|0〉H.

The above expression for the eigenvalue might not be convergent. In fact, it was discussed in
[19] for r1 = r2 = 0 and λ = 1 that the matrix elements of the Q-operator contain the formal
power series

δ
(
q2Sz) =

∑
�∈Z

q2�Sz

Sz = M

2
− nB (60)

in the deformation parameter q. If one removes this factor in the sector Sz = 0 by an ad-
hoc renormalization the remaining auxiliary matrix can be identified with Baxter’s expression
(101) in [10]. See the discussion in section 5 of [19] for details. Obviously, our algebraic Bethe
ansatz analysis of the auxiliary matrices reproduces these findings. In the limit r1, r2 → 0
we obtain apart from the factor (60) and the constant r−Sz

0 , the Bethe polynomial (39) as
eigenvalue as we should. However, the required renormalization is certainly an unsatisfactory
answer to the convergence problem, in particular as the factor (60) is needed outside the spin-
sector Sz = 0 in order to satisfy the functional equation (28) which for the XXZ spin-chain is
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calculated to

Q(z; r0, r1, r2)T (z) = λ−1q
M
2 Q(zq−2; r0q

−1, r1q
2, r2)

+ λq
M
2

(
M∏

m=1

z − ζm

zq2 − ζm

)
Q(zq2; r0q, r1q

−2, r2). (61)

In order to obtain a convergent expression let us modify the auxiliary space by restricting it to
an invariant subspace at special values of the parameters r1,2.

4.2.1. Truncation of the auxiliary space. In order to establish convergence it would be helpful
to restrict the sum in the eigenvalue expression of the auxiliary matrix either to the positive
or negative integers and then choose the twist parameter appropriately. In order to achieve
this we have to find values for the free parameters (r0, r1, r2) such that the representation (23)
contains an invariant subspace. To this end we need for some mo ∈ Z the truncation condition

e0|mo〉π+ = w
r1r2 + 1 − r1q

2mo − r2q
−2mo

(q − q−1)2
|mo〉π+ = 0. (62)

This is easily achieved by setting

either r1 = q−2mo or r2 = q2mo . (63)

For simplicity let us choose mo = 0 and r2 = 1. Denote by π+
� = π+

�(w; r0, r1) the irreducible
subrepresentation of (23) which is obtained by restriction to the negative integers (including
zero) and set

Q�(w; r0, r1) = (Tr
π+

�
⊗1H)Q =

0∑
n=−∞

Qnn. (64)

Since the parameter r2 does not shift in the decomposition (26) this truncation is consistent
with the functional equation (28), albeit we have to supplement the projection map τ by
defining

τ |0〉π+
�(w;r0,r1) ⊗ |1〉

π
(1)
z

≡ r0(r1 − 1)

q2 − 1
|0〉π+

�(wq−2;r0q−1,r1q2) r1 �= 1 w = z. (65)

For the semi-infinite representation space we now obtain the following eigenvalue associated
with a Bethe state (37):

Q�(z; r0, r1) = λ−2q2Sz

r−Sz

0 PB(zr1)PB(z)

∞∑
�=1

λ2�q−2�Sz

∏M
m=1(zq

2�/ζm − 1)

PB(zq2�)PB(zq2�−2)
. (66)

Here we have denoted the eigenvalue by the same symbol as the operator. Unlike in the
previous expression the sum now only ranges over the positive integers. This puts us in the
position to prove absolute convergence of the series in (66). We treat the cases |q| = 1 and
|q|±1 > 1 separately.

Suppose q is of modulus one, then we deduce from

|q| = 1 :
∞∑

�=1

∣∣∣∣∣λ2�q−2�Sz

∏M
m=1(zq

2�/ζm − 1)

PB(zq2�)PB(zq2�−2)

∣∣∣∣∣ �
∏M

m=1(|z/ζm| + 1)∏nB

j=1(1 − |z/zj |)2

∞∑
�=1

|λ|2� (67)

that absolute convergence is guaranteed as long as |λ| < 1.
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Now let |q|±1 > 1 and set q = exp v, z = exp 2u, ζm = exp 2ξm. Rewriting
∞∑

�=1

∣∣∣∣∣λ2�q−2�Sz

∏M
m=1(zq

2�/ζm − 1)

PB(zq2�)PB(zq2�−2)

∣∣∣∣∣
=

∞∑
�=1

2|λ|2�|q|nB |z|M
2 −nB

∏M
m=1 |sinh(u − ξm + �v)||ζm|− 1

2∏nB

j=1 |sinh(u − uj + �v) sinh(u − uj + (� − 1)v)|/|zj |

� const
∞∑

�=1

|λ|2�|q|±2�|Sz|

we find absolute convergence for |λ| < |q|∓M/2. Thus, in summary we are left with the
condition

|λ| < |q|∓M/2 |q|±1 � 1 (68)

which now includes the case when q is of modulus one.
Having assured convergence we can now verify that the eigenvalues (66) satisfy the

functional equation (61). Doing so we again implicitly made the assumption that the
Q-operators in the functional equation commute with each other. Since the auxiliary space
is still semi-infinite, the proof of commutation via the construction of the corresponding
intertwiners (similar to the root of unity case) is less feasible. Instead we are going to exploit
the completeness of the Bethe ansatz when q is not a root of unity.

Provided one accepts that the Bethe states (37) and their counterparts under spin-reversal

R
∣∣z1, . . . , znB

〉
H ∝

nB∏
j=1

C(zj )R|0〉H R|0〉H = |1〉
C

2 ⊗ · · · ⊗ |1〉
C

2 (69)

form a complete set of eigenstates which span the whole quantum space H, one deduces
that the three-parameter family {Q�(z; r0, r1)} of auxiliary matrices can simultaneously
be diagonalized as the Bethe roots only depend on q and λ. Hence, we must have
[Q�(z; r0, r1),Q�(w; r ′

0, r
′
1)] = 0.

Note that the commutation of the Q-operators for arbitrary spectral parameters together
with the explicit form of the matrix elements (25) implies that the eigenvalues (66) are
polynomials of degree �M in the spectral variable z. Unlike the root of unity case, however,
the sum by itself is not a polynomial. One now has to include a factor PB in front of the sum
in order to cancel the simple poles of the denominator at z = zj . Employing the Bethe ansatz
equations (38) one then deduces that for any closed contour C� around zjq

−2� with integer
� � 0 one has ∮

C�

dz PB(z)

∞∑
�=1

λ2�q−2�Sz

∏M
m=1(zq

2�/ζm − 1)

PB(zq2�)PB(zq2�−2)
= 0.

The vanishing of the contour integral signals that the above rational function is indeed a
polynomial in z. This is consistent with (66), where the parameter r1 in the argument of the
first factor is arbitrary.

For completeness we briefly discuss the transformation under spin-reversal in order to
obtain the eigenvalues of the auxiliary matrix ‘beyond the equator’, i.e. for the states (69).
Acting with the spin-reversal operator on the auxiliary matrix we obtain

RQ�(z; r0, r1)R = Tr
π+

�
λ

π+
�(h′)⊗1

σx
ML0M(z/ζM)σ x

M · · · σx
1 L01(z/ζ1)σ

x
1

which amounts in terms of the intertwiner L to the replacement

{α, β, γ, δ} → {δ, γ, β, α}. (70)
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From (25) one derives the following identities for the matrix elements of the intertwiner L:

αn(wq−2, q; r0, r1, r2) = δn

(
w, q−1; r−1

0 , r2, r1
)

δn(wq−2, q; r0, r1, r2) = αn

(
w, q−1; r−1

0 , r2, r1
)

(71)

βnγn−1|(wq−2,q;r0,r1,r2) = βnγn−1|(w,q−1;r−1
0 ,r2,r1)

.

Note that only the above combinations of matrix elements contribute to the trace of the
monodromy matrix (13), i.e. the auxiliary matrix (49). Hence, we have the identity

RQ�(zq−2, q; r0, r1, r2 = 1)R = Q�
(
z, q−1; r−1

0 , r2 = 1, r1
)
. (72)

Thus, spin-reversal leads to the consideration of the truncated auxiliary matrix with r1 = 1 and
r2 arbitrary. We now discuss this case in the context of q-oscillator representations. Before
we have the following:

Remark. In order to ensure convergence for, for example, |q| = 1, we have excluded the
quasi-periodic boundary conditions with |λ| � 1. However, in order to recover, for example,
periodic boundary conditions, λ = 1, one may proceed as follows. Employing (61) one can
express the transfer matrix eigenvalues in terms of the auxiliary matrix at |λ| < 1. While
at the moment we do not have an analytic argument due to the implicit dependence of the
Bethe roots on λ, numerical calculations suggest that one can then safely take the limit λ → 1
in order to recover the eigenvalues of the six-vertex transfer matrix with periodic boundary
conditions.

4.2.2. q-oscillator representations. We now simplify the representation (23) of [19] further
in order to make contact with the results in [17] for the Coulomb gas formalism of conformal
field theory. We explicitly show that one can derive the analogue of the functional equations
therein also for the XXZ spin-chain.

The q-oscillator algebra is defined in terms of the generators [26]

qe+e− − q−1e−e+ = (q − q−1)−1 and [h, e±] = ±2e±. (73)

We define two representations �± by identifying e0 → e±, e1 → e∓, h1 = −h0 → ±h and
setting

�+ = π+(w; r0 = 1, r1 = 1, r2 = 0) and �− = π+(w; r0 = 1, r1 = 0, r2 = 1). (74)

Again we note that the representation space in (23) truncates and it will be understood that
the representation spaces associated with �± are the modules obtained by acting freely with
e± on the highest (lowest) weight vector |0〉. Let Q± = (Tr�± ⊗ 1)Q then we find for the
eigenvalues associated with a Bethe vector (37),

Q+(z) = (−1)MPB(z)

∞∑
�=0

λ2�q−2�Sz = (−1)MPB(z)

1 − λ2q−2Sz (75)

and

Q−(z) = PB(z)

∞∑
�=0

λ2�q−2�Sz

∏M
m=1(zq

2�+2/ζm − 1)

PB(zq2�+2)PB(zq2�)
. (76)

For absolute convergence we have assumed that (68) holds as before. Note that in order to
satisfy the functional equation (61) with the transfer matrix we have to keep in mind that the
operators Q± still depend implicitly on the parameters (r0, r1, r2) which shift in (26). This
is particularly important in the case of Q+ = Q�(r0 = 1, r1 = 1, r2 = 0) where in the
functional equation the shift r1 → r1q

±2 occurs and, hence, the truncation condition (62) for
the auxiliary space changes.
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This highlights the importance of introducing the free parameters (r0, r1, r2) in (23).
Even if one would directly start the discussion with the simpler looking representations (74)
the decomposition of the tensor product (26), which underlies the T Q-equation (28), leads
to the consideration of the more general representation (23) (see also the comments in the
introduction of [1] for the root of unity case). We should therefore understand expressions
(75) and (76) as a decomposition of the general solution (66). Namely, we can write (66) as a
product of (75) and (76) (compare with formula (4.10) in [17]),

Q�(z; r0, r1) = (−1)Mr−Sz

0 (1 − λ2q−2Sz

)Q+(zr1)Q
−(z). (77)

One now easily derives the analogue of the functional relations reported in [17] for the
Coulomb gas formalism. For instance, we find for the eigenvalues the following formula
corresponding to the ‘quantum Wronskian condition’ (cf equation (4.3) in [17]):

Q+(zq2)Q−(z) − λ2q−2Sz

Q+(z)Q−(zq2) =
∏M

m=1(1 − zq2/ζm)

1 − λ2q−2Sz . (78)

This is a special case of a more general relation (see equation (89) below) involving the fusion
matrices of the six-vertex model, which we discuss next.

5. The six-vertex fusion hierarchy

In order to provide further support for our algebraic Bethe ansatz computation of the
eigenvalues of the auxiliary matrices, we now make contact with what in the literature is
known as the fusion hierarchy. We follow a similar line of argument to that in [14] for the
eight-vertex model. First, we will briefly review the representation theoretic aspects in the
construction of the fusion hierarchy which will be the key to connecting fusion and auxiliary
matrices at roots of unity. We specialize at once to the XXZ spin-chain (47).

We start by introducing the monodromy matrices associated with the fusion matrices.
Denote by π(n)

z : Uq(s̃l2) → End C
n+1 the spin n/2 evaluation representation of the quantum

loop algebra, i.e.

π(n)
z (e1)|m〉 = [n − m + 1]q |m − 1〉 π(n)

z (f0) = z−1π(n)
z (e1)

π(n)
z (f1)|m〉 = [m + 1]q |m + 1〉 π(n)

z (e0) = zπ(n)
z (f1) (79)

π(n)
z (qh1)|m〉 = qn−2m|m〉 π(n)

z (qh0) = π(n)
z (q−h1)

with m = 0, 1, . . . , n. Let

T(n+1)(zq−n−1) = (
π(n)

z ⊗ πH
)
λh⊗1R ∈ End C

n+1 ⊗ H

= λπ(n)(h)⊗1L
(n+1)
0M (z/ζM) · · · L(n+1)

01 (z/ζ1) H = (C2)⊗M (80)

with

L(n+1)(w) = (
π(n)

w ⊗ π
(1)
z=1

)
R ∈ End C

n+1 ⊗ C
2. (81)

Note that we have labelled the fusion matrices by the dimension of their auxiliary space instead
of the spin. The matrices (7), (80) and (81) again satisfy the Yang–Baxter relation. The matrix
elements of (81) w.r.t. the representation π

(1)
z=1 are explicitly given by

〈0|L(n+1)(w)|0〉 = ρ+π
(n)

(
q

h
2
) − ρ−π(n)

(
q− h

2
)

〈0|L(n+1)(w)|1〉 = ρ+(q − q−1)π(n)
(
q

h
2
)
π(n)(f1)

(82)
〈1|L(n+1)(w)|0〉 = ρ−(q − q−1)π(n)(e1)π

(n)
(
q− h

2
)

〈1|L(n+1)(w)|1〉 = ρ+π
(n)

(
q− h

2
) − ρ−π(n)

(
q

h
2
)
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with the coefficients ρ± satisfying the constraint ρ+/ρ− = wq. From the following non-split
exact sequence describing the decomposition of evaluation representations of the quantum
loop algebra Uq(s̃l2) [21]:

0 → π
(n−1)
w′

ı
↪→ π(n)

w ⊗ π(1)
z

τ→ π
(n+1)
w′′ → 0 w = w′q−1 = w′′q = zqn+1 (83)

one derives a functional relation, known as the fusion hierarchy (see, e.g., [27, 28, 19, 30] for
an alternative form of the fusion equation),

T (n)(z)T (2)(zq−2) = T (n+1)(zq−2)

M∏
m=1

(zq2/ζm − 1) + T (n−1)(zq2)

M∏
m=1

(z/ζm − 1) . (84)

Here

T (n+1)(zq−n−1) = (
Tr
π

(n)
z

⊗1
)
T(n+1)(zq−n−1) ∈ EndH. (85)

The coefficients in (82) have been chosen as

ρ+ = wq ρ− = 1 (86)

and we have identified

T (2)(zq−2) ≡ q− M
2 T (z)

M∏
m=1

(zq2/ζm − 1) T (1)(z) ≡
M∏

m=1

(zq2/ζm − 1). (87)

The coefficient functions in (84) have been calculated using the explicit form of the inclusion
and projection map in (83),

0π(n−1) 
 |m〉 ı
↪→ |m〉′ = [n − m]|m〉 ⊗ |1〉 − qn−m[m + 1]|m + 1〉 ⊗ |0〉

and

|m〉′′ = [n + 1]

[n − m + 1]
|m〉 ⊗ |0〉 τ→ |m〉 ∈ π(n+1).

Inserting the explicit expression for the eigenvalues of the six-vertex transfer matrix from
the algebraic Bethe ansatz (40) we obtain the following formula for the eigenvalues of the
fusion matrices associated with the Bethe states (37):

T (n)(z) = λ−n−1q(n+1)Sz

PB(z)PB(zq2n)

n∑
�=1

λ2�q−2�Sz

∏M
m=1(zq

2�/ζm − 1)

PB(zq2�)PB(zq2�−2)
. (88)

Here we have again denoted eigenvalues and operators by the same symbol. PB denotes
the Bethe polynomial defined in (39) whose zeroes are solutions to the Bethe ansatz
equations (38). The proof follows via induction and is straightforward. Note that the
eigenvalues (88) are polynomials in z. The rational function in (88) only has poles at
z = zj , zjq

2n which are cancelled by the factor PB(z)PB(zq2n) in front of the sum. The
residue of the remaining poles is zero due to the Bethe ansatz equations.

Away from a root of unity we can already connect the fusion hierarchy with the auxiliary
matrices (75) and (76). A straightforward calculation proves for the eigenvalues the relation

λ−nqnSz

Q+(zq2n)Q−(z) − λnq−nSz

Q+(z)Q−(zq2n) = (−1)Mλ−2q2Sz

λ−1qSz − λq−Sz T
(n)(z) (89)

which corresponds to formula (4.1) in [17]. The above functional equation not only holds for
the eigenvalues but also for the operators provided the Bethe states constitute a complete basis
of the quantum space.
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5.1. Degeneracies at roots of unity

The discussion of the fusion matrices has so far applied in the case of ‘generic’ q (i.e.
the deformation parameter being either a root of unity or not) and finite solutions to the
Bethe ansatz equations entering the eigenvalues via the Bethe polynomial (39). We now
specialize in the case qN ′ = ±1 and start by showing that the fusion matrices (85) exhibit the
same infinite-dimensional non-Abelian symmetries as the transfer matrix.

Recall from [3, 5] that the symmetry generators for the XXZ spin-chain are given by
(i = 0, 1)

E
(N ′)
i = lim

q ′→q

M⊗
m=1

π
(1)
ζm

�(M)
(
eN ′
i

)/
[N ′]q ′! (90)

F
(N ′)
i = lim

q ′→q

M⊗
m=1

π
(1)
ζm

�(M)
(
f N ′

i

)/
[N ′]q ′!. (91)

Here �(M) = (1 ⊗ �)�(M−1) denotes the M-fold coproduct with �(2) ≡ � and q ′ is some
number with q ′N ′ �= ±1. The above form of the symmetry generators of U(s̃l2) is restricted to
the commensurate spin-sectors 2Sz = 0 mod N when λ = 1 [3] but extends for the subalgebras
U(b∓) to all spin-sectors when λ = q±Sz

[5]. The extension of the loop symmetry from the
fusion degree n = 2 to arbitrary n now simply follows by induction from the recursion relation
(84). Thus, the eigenspaces of the fusion matrices also organize into multiplets containing
states whose total spin differs by multiples of N ′.

Remark. In a similar manner one proves the loop symmetry of the higher-spin six-vertex
models. The only major difference lies in the choice for the representation πH defining the
quantum space which changes to πH = ⊗M

m=1 π
(n)
ζm

. An explicit calculation shows that the
analogue of the operators (90) is well defined. Adopting the proof in [5] for the loop symmetry
of the ‘fundamental’ fusion matrix T (2) one shows again by induction that T (n+1) exhibits the
same symmetries. This provides an alternative proof to that given in [25].

5.2. Spectrum of the fusion matrices at qN = 1

In order to elucidate the spectrum of the fusion matrices at roots of unity let us discuss the
limit q ′ → q from transcendental or irrational q ′ to q being a root of unity. In order to
simplify the notation we will often denote this limit by the symbol qN → 1 in the following.
In order to perform the root of unity limit we need the explicit dependence of the Bethe roots
zi on the arbitrary deformation parameter q ′. Unfortunately, this dependence is in general not
known. However, for small chains up to the size M � 8 one can compute some Bethe roots
analytically. According to these examples the following scenarios might occur in the root of
unity limit:

1. A Bethe root tends to zero,

lim
qN →1

zi = 0. (92)

We shall denote the number of such Bethe roots by n0.
2. A Bethe root tends to infinity,

lim
qN →1

zi = ∞. (93)

We shall denote the number of infinite roots by n∞.
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3. There are N ′ Bethe roots which form a complete string

lim
qN →1

(
zi0 , zi1 , . . . , ziN ′−1

) = (
zi0 , zi1 = zi0q

2, . . . , ziN ′−1
= zi0q

2N ′−2
)
. (94)

Note that these complete strings obtained in the root of unity limit do not coincide with the
zeroes of the classical Drinfeld polynomial (58) contained in the spectrum of the auxiliary
matrices.

Because of these three possibilities we deduce that taking the root of unity limit of the
Bethe polynomial (39) is not the same as the Bethe polynomial containing the finite solutions
of the Bethe ansatz equations at a root of unity, i.e.

lim
q ′→q

PB(z, q ′) �= PB(z, q) with qN ′ = ±1.

In the presence of vanishing Bethe roots the root of unity limit of the Bethe polynomial might
not even be well defined. However, the eigenvalues of the fusion and transfer matrices only
contain ratios of these polynomials. From the simple identities

lim
zi→0

(z − zi)(zq
2n − zi)

(zq2� − zi)(zq2�−2 − zi)
= q2n−4�+2 (95)

and

lim
zi→∞

(z − zi)(zq
2n − zi)

(zq2� − zi)(zq2�−2 − zi)
= 1 (96)

we infer that the spectrum of the fusion matrices at a root unity changes to

lim
qN →1

T (n)(z) = λ−n−1q(n+1)sPB(z)PB(zq2n)

n∑
�=1

λ2�q−2�s

∏M
m=1(zq

2�/ζm − 1)

PB(zq2�)PB(zq2�−2)
. (97)

Here we have set

s = 2n0 + Sz mod N ′. (98)

Again we remind the reader that PB is now the ‘reduced’ Bethe polynomial, i.e. it only contains
the finite Bethe roots at qN = 1 and no complete strings. From the identity (97) it follows by
a direct calculation that one has the following simplification of the fusion hierarchy in terms
of the eigenvalues:

lim
qN →1

T (N ′+1)(z) = (λ−N ′
qN ′s + λN ′

q−N ′s)

M∏
m=1

(zq2/ζm − 1) + lim
qN →1

T (N ′−1)(zq2). (99)

This formula has been reported for λ = 1, ζm = 1 before in the literature [31, 29, 14].

5.3. Connection with auxiliary matrices at roots of 1

We will now argue that the fusion matrix of degree N ′ at qN ′ = ±1 can be identified with a
special limit of the auxiliary matrix (49). First, we observe that the corresponding auxiliary
spaces have the same dimension. From the representation theory of quantum groups at
roots of unity [32, 33] one now deduces the following. Restrict the respective evaluation
representations (18) and (79) of the quantum loop algebra to the finite subalgebra Uq(sl2). If
the values of the central elements in the respective Uq(sl2)-representations determining the
auxiliary spaces are equal then they must be isomorphic. The values of the central elements
at a root of unity are

T (N ′) : π(N ′)(eN ′
1

) = π(N ′)(f N ′
1

) = 0 π(N ′)(qh)N
′ = qN ′(N ′−1)

Qµ : πµ
(
eN ′

1

) = πµ
(
f N ′

1

) = 0 πµ(qh)N
′ = q−N ′

µ−N ′
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and for the Casimir c = qh+1 + q−h−1 + (q − q−1)2f e one finds

T (N ′) : π(N ′)(c) = qN ′
+ q−N ′

Qµ : πµ(c) = µ + µ−1.

Hence, in the limit µ → qN ′ = ±1 both representations become isomorphic and one can
therefore construct a gauge transformation in the auxiliary space rendering the fusion and
auxiliary matrix equal (see [1] for details). Thus, we conclude

lim
qN →1

T (N ′)(z) = lim
µ→qN ′

Qµ(z/µ). (100)

Note that in this limit the auxiliary matrix therefore also becomes degenerate. Nevertheless,
we can check the eigenvalues for consistency by comparing the expressions for the eigenvalues
derived from the algebraic Bethe ansatz with those from the fusion hierarchy. One finds for
the eigenvalues of the fusion matrix

lim
qN →1

T (N ′)(z) = λ−N ′−1q(N ′+1)sPB(z)PB(zq2N ′
)

N ′∑
�=1

λ2�q−2�s
∏M

m=1(zq
2�/ζm − 1)

PB(zq2�)PB(zq2�−2)
. (101)

In the commensurate sectors 2Sz = 0 mod N where n0 = n∞ = 0 we can set s = 0 in (101).
Then the spectrum of the auxiliary matrices Qµ derived for finite Bethe states at a root of
unity coincides for µ = qN ′ = ±1 with that of the fusion matrix. Outside the commensurate
sectors it has been argued (and proved for N = 3) in [2] that the auxiliary matrices (49)
have eigenvalues of the form (57). When comparing with formula (11) in [2] one has to
make the replacement n̄∞ → n∞ in the notation. Here PS denotes the previously discussed
polynomial (58) whose zeroes are fixed by the representation theory of the loop algebra up to a
factor µ2N ′

,

qN ′ = 1 : Nµzn̄∞PS(z
N ′

, µ = qN ′
) = q(N ′+1)s

∑
�∈ZN ′

q−2�s
∏M

m=1(zq
2�/ζm − 1)

PB(zq2�)PB(zq2�−2)
. (102)

The power of the monomial must be an integer by construction of the auxiliary matrix and
the normalization chosen in (19). Interestingly, numerical examples show that vanishing
and infinite Bethe roots seem to be absent for all spin-sectors when λ = q±Sz

, i.e. for the
boundary conditions where the symmetry generators of the loop algebra are known for all
spin-sectors [5]. There appears to be a close connection between the form of the symmetry
algebra generators and the presence of infinite or vanishing Bethe roots. This might hold the
clue for constructing the symmetry algebra outside the commensurate sectors when λ = 1.
Further investigation is needed to clarify this point.

6. Conclusions

In this paper we have connected two known alternative methods of solving integrable models,
the algebraic Bethe ansatz and Baxter’s concept of auxiliary matrices. Within the community
of integrable models the notion of auxiliary matrices has historically received less attention
than the Bethe ansatz, even though it applies to a wider range of models. Unlike the Bethe
ansatz, auxiliary matrices do not rely on the existence of a pseudo-vacuum or spin conservation;
see the discussion in section 3. One possible reason that auxiliary matrices have not earlier
been investigated in more detail, might be that Baxter’s construction procedure [15] leads to a
final auxiliary matrix whose algebraic structure is not of the simple form (49). Note also that
Baxter’s auxiliary matrix for λ = 1 is limited to the case of even spin-chains, M ∈ 2N, when
q is not a root of unity and to M mod N ∈ 2N when qN = 1; see condition (9.8.16) in [15].
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For a construction of Baxter’s auxiliary matrices at more general boundary conditions see,
e.g., [34].

In contrast the construction of auxiliary matrices using intertwiners of quantum groups
yields simpler algebraic expressions, has no restrictions on the length of the spin-chain and,
most importantly, allows for maintaining the Yang–Baxter relation (15). It is the last fact
which puts us in the position to link the formalism of the algebraic Bethe ansatz with the Q-
operator or auxiliary matrix. Furthermore, the use of representation theory in the construction
of Q-operators enables one to make direct contact with the underlying algebraic structure
of the integrable model, the quantum loop algebra. The auxiliary matrices discussed in this
paper are therefore a key link in understanding the relation between the Bethe ansatz and the
representation theory of quantum groups.

The importance of this aspect of the Q-matrix is particularly highlighted in the root of
unity case. As pointed out in [2] the auxiliary matrices constructed at a root of unity [1]
might serve as an efficient tool to analyse the irreducible representations of the loop algebra
symmetry. In our investigation of the spectrum of the auxiliary matrices via the Bethe ansatz
as well as the fusion hierarchy we came across the polynomial (cf formula (58) in the text)

Nµ=1PS(z
N ′

, µ = 1) =
∑

k∈ZN ′

λ−2kq2kSz

(zq−2k − 1)M

PB(zq−2k)PB(zq−2k−2)
qN ′ = ±1. (103)

Recall that the Bethe ansatz equations are sufficient to ensure that the right-hand side of this
identity is a polynomial. This expression has been conjectured to be the classical Drinfeld
polynomial [23]. The latter describes the irreducible representation of the loop algebra
spanning the degenerate eigenspace of the transfer matrix; see [2] for concrete examples.

What is the benefit of the identification? The symmetry algebra can be used to compute
the Drinfeld polynomial, i.e. the left-hand side of equation (103). We can then use the above
identity to extract the Bethe roots for each degenerate eigenspace of the transfer matrix. At
the moment this identification still awaits proof as well as its extension to the quasi-periodic
boundary conditions λ = q±Sz

investigated in [5]. The results of this paper provide a further
step towards this direction.

Away from a root of unity our interest has been to make contact with the findings in [16, 17]
for the Coulomb gas formalism of conformal field theory. This also provided the motivation
to perform the algebraic Bethe ansatz computation of the spectrum of the Q-operators for an
arbitrary quantum space in order to accommodate the CFT setup. For the XXZ spin-chain
we started from the results obtained in [19] to analyse the spectrum of the auxiliary matrix
and to find the analogue of the functional equations reported in [17] for the six-vertex model.
The noteworthy difference between the constructions in [17] and [19] is the occurrence of free
parameters in the representation spanning the auxiliary space of the Q-operator; see definition
(23). We saw that the introduction of such parameters is natural in light of the representation
theoretic background (26) of the T Q-equation (28); see also [19].

What is the role of these parameters with hindsight of the spectrum of the six-vertex
model? Our result for the eigenvalues (66) and (72) showed that the parameter r0 in (23) is
needed to break spin-reversal symmetry, while the parameters r1,2 simply reflect the polynomial
structure of the eigenvalues of the auxiliary matrix in the spectral variable z. One of them
is needed to truncate the auxiliary space in order to achieve convergence when q is not a
root of unity. The freedom in choosing the remaining parameter can be used to decompose
the eigenvalue (66) into the polynomials (75) and (76); see also (77). This decomposition
has been observed in [17] in the context of CFT (see equation (4.10) therein) and was the
starting point for the formulation of a series of functional equations all of which we recovered
in the case of the XXZ spin-chain; see, for example, equation (89) in the text. As these
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functional relations have been the starting point for connecting the spectrum of the auxiliary
matrices with ordinary differential equations [35], it is natural to ask whether this can also
be achieved for the XXZ spin-chain. So far partial results exist at some roots of unity
only [36].

Convergence problems did not arise in the root of unity case and one might ask about the
root of unity limit of the auxiliary matrix (66). While we did not pursue this issue in detail
it seems at first sight plausible that in this limit the infinite-dimensional representation splits
up into an infinite number of finite-dimensional subrepresentations. Reducing the trace of
the monodromy matrix (13) to such a subrepresentation one might be lead to the conclusion
that one ends up with the auxiliary matrices constructed at a root of unity in [1]. This is not
true. The full set of auxiliary matrices constructed in [1] does not preserve the total spin Sz.
Here we only dealt with a subset of the auxiliary matrices available at a root of unity. These
additional Q-operators also contain free parameters but their nature is different from those in
(23). They reflect the enhanced symmetry of the XXZ spin-chain at rational coupling, i.e.
qN ′ = ±1. The full scope of this symmetry is not accessible via the Bethe ansatz whence
further work is required to determine the spectrum of all auxiliary matrices in [1] as well as
the spectrum inside the degenerate eigenspaces; see our discussion in section 4.1.2.
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Appendix. The spectrum of Q. Proof for nB = 2, 3

We outline the main steps in proving the conjecture (46) for the Bethe states (37) with
nB = 2, 3. We will make use of the following well-known commutation relation of the
Yang–Baxter algebra:

A1B2 = 1

b21
B2A1 − c21

b21
B1A2 D1B2 = 1

b12
B2D1 − c′

12

b12
B1D2

[D1, A2] = c12

b12
B2C1 − c′

12

b12
B1C2 [C1, B2] = c′

12

b12
(A2D1 − A1D2).

Here the indices are a shorthand notation for the dependence of the operators (9) and the
Boltzmann weights (12) on the respective Bethe roots. For instance,

bij ≡ b(zi/zj ), . . . and Ai ≡ A(zi), Bi ≡ B(zi), . . . etc.

To unburden the formulae we also introduce the symbols

�i
kl ≡ δl(w/zi)

αk(w/zi)
− βl+1(w/zi)γl(w/zi)

αl+1(w/zi)αk(w/zi)
and ri

k ≡ βk(w/zi)

αk(w/zi)
.

The case nB = 2. From the relations (30), (31), (32) and (33) one obtains

QkkB1B2 = �1
kk�

2
kkB1B2Qkk

+
r1
k+1

b21
Qkk+1B2A1 + �1

kkr
2
k+1B1Qkk+1A2 − r1

k+1
c21

b21
Qkk+1B1A2

− r1
k

b12
Qk−1kB2D1 − �1

kkr
2
k B1Qk−1kD2 + r1

k

c′
12

b12
Qk−1kB1D2
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+ r1
k+1r

1
k Qk−1k+1B2C1 + �1

kkr
2
k+1r

2
k B1Qk−1k+1C2

+ r1
k+1r

1
k

c′
12

b12
Qk−1k+1(A2D1 − A1D2).

Moving all the B-operators past the Q-operators except for the first term, this can be
rewritten as

QkkB1B2 = �1
kk�

2
kkB1B2Qkk +

r1
k+1

b21
Qkk+1B2A1 +

r2
k+1

b12
Qkk+1B1A2

− r1
k

b12
Qk−1kB2D1 − r2

k

b21
Qk−1kB1D2 − r1

k+2r
2
k+1

�1
kk

�1
kk+1

Qkk+2A1A2

− r2
k r1

k−1
�1

kk

�1
k−1k

Qk−2kD1D2 +
r1
k r2

k+1

b12
Qk−1k+1A2D1 +

r1
k+1r

2
k

b21
Qk−1k+1A1D2

+ r1
k r1

k+1
�2

kk

�2
kk+1b12

Qk−1k+1B2C1 + r2
k r2

k+1
�1

kk

�1
kk+1b21

Qk−1k+1B1C2

− r1
k+2r

2
k+1r

1
k

�1
kk

�1
kk+1

Qk−1k+2C1A2 − r1
k+2r

2
k+1r

2
k

�1
kk

�1
k−1k+1

Qk−1k+2A1C2

+ r1
k+1r

2
k r1

k−1
�1

kk

�1
k−1k

Qk−2k+1C1D2 + r2
k+1r

2
k r1

k−1
�1

kk

�1
k−1k+1

Qk−2k+1D1C2

− r1
k+2r

2
k+1r

2
k r1

k−1
�1

kk

�1
k−1k+1

Qk−2k+2C1C2.

Acting with this expression on the pseudo-vacuum all the terms containing C-operators vanish.
Taking the trace on both sides of the equation we then obtain∑

k

QkkB1B2|0〉H =
∑

k

�1
kk�

2
kkB1B2Qkk|0〉H +

∑
k

r1
k+1Qkk+1B2(A1/b21 − D1/b12)|0〉H

+
∑

k

r2
k+1

b12
Qkk+1B1(A2/b12 − D2/b21)|0〉H

+
∑

k

(
r1
k+1r

2
k

b21
Qk−1k+1A1D2 +

r1
k r2

k+1

b12
Qk−1k+1A2D1

)
|0〉H

−
∑

k

(
r1
k+2r

2
k+1

�1
kk

�1
kk+1

Qkk+2A1A2 + r2
k r1

k−1
�1

kk

�1
k−1k

Qk−2kD2D1

)
|0〉H.

Employing the Bethe ansatz equations (38),

〈0|Ai |0〉Hbij = bji〈0|Di |0〉H i, j = 1, 2

and using the identity

r1
k+1r

2
k

b12
+

r2
k+1r

1
k

b21
− r1

k+1r
2
k

�1
k−1k−1

�1
k−1k

− r2
k+1r

1
k

�1
k+1k+1

�1
kk+1

= 0

we see that the remaining terms cancel. This proves (46) for nB = 2.

The case nB = 3. The calculation follows the same strategy as before. The various steps can
be simplified by observing that the expressions must be symmetric under any permutation of
the Bethe roots. We omit the details of the computation and only provide some intermediate
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steps. Starting from the result for the case nB = 2 one has

QkkB1B2B3|0〉H = �1
kk�

2
kkB1B2QkkB3|0〉H + Qkk+1

(
r2
k+1

b32b12
B1B3A2 − r2

k+1c32

b12b32
B1B2A3

+
r1
k+1

b21b31
B2B3A1 − r1

k+1c31

b21b31
B2B1A3

)
|0〉H

−Qk−1k

(
r2
k

b21b23
B1B3D2 − r2

k c′
23

b21b23
B1B2D3

+
r1
k

b12b13
B2B3D1 − r1

k c′
13

b12b13
B2B1D3

)
|0〉H

+ Qk−1k+1
r1
k+1r

2
k

b21

(
1

b31b23
B3A1D2 − c31

b31b23
B1A3D2

− c′
23

b21b23
B2A1D3 +

c21c
′
23

b21b23
B1A2D3

)
|0〉H

+ Qk−1k+1
r2
k+1r

1
k

b12

(
1

b32b13
B3A2D1 − c32

b32b13
B2A3D1

− c′
13

b12b13
B1A2D3 +

c12c
′
13

b12b13
B2A1D3

)
|0〉H

+ Qk−1k+1

(
�1

kkc
′
23

�1
kk+1b23

r2
k+1r

2
k B1(A3D2 − A2D3)

+
�2

kkc
′
13

�2
kk+1b13

r1
k+1r

1
k B2(A3D1 − A1D3)

)
|0〉H

−Qkk+2
�1

kkr
1
k+2r

2
k+1

�1
kk+1

(
1

b31b32
B3A1A2 − c31

b31b32
B1A3A2

+
c21c32

b21b32
B1A2A3 − c32

b32b21
B2A1A3

)
|0〉H

−Qk−2k

�1
kkr

1
k−1r

2
k

�1
k−1k

(
1

b13b23
B3D1D2 − c′

13

b13b23
B1D3D2

+
c′

12c
′
23

b12b23
B1D2D3 − c′

23

b23b12
B2D1D3

)
|0〉H

−Qk−1k+2

(
�2

kkr
1
k r2

k r2
k+2c

′
23

�2
kk+1b21b23

A1(A3D2 − A2D3)

+
�1

kkr
2
k r1

k r1
k+2c

′
13

�1
kk+1b12b13

A2(A3D1 − A1D3)

)
|0〉H

+ Qk−2k+1

(
�2

kkr
2
k−1r

1
k r2

k+1c
′
23

�2
k−1kb12b23

D1(A3D2 − A2D3)

+
�1

kkr
1
k−1r

2
k r1

k+1c
′
13

�1
k−1kb21b13

D2(A3D1 − A1D3)

)
|0〉H.

Here we have dropped all terms where C acts on the pseudo-vacuum first and those which
contain more C than B-operators. The last identity is further simplified to
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QkkB1B2B3|0〉H = �1
kk�

2
kk�

3
kkB1B2B3Qkk|0〉H

+ Qkk+1

(
r1
k+1

b21b31
B2B3A1 +

r2
k+1

b12b32
B1B3A2 +

r3
k+1

b13b23
B1B2A3

)
|0〉H

−Qk−1k

(
r1
k

b13b12
B2B3D1 +

r2
k

b21b23
B1B3D2 +

r3
k

b31b32
B1B2D3

)
|0〉H

+ Qk−1k+1

(
r1
k+1r

2
k

b21b31b23
B3A1D2 +

r1
k r2

k+1

b12b32b13
B3A2D1 + · · ·

)
|0〉H

−Qkk+2

(
�1

kkr
1
k+2r

2
k+1

�1
kk+1b31b32

B3A1A2 + · · ·
)

|0〉H

−Qk−2k

(
�1

kkr
1
k−1r

2
k

�1
k−1kb13b23

B3D1D2 + · · ·
)

|0〉H

−Qk−1k+2

(
�1

kkr
3
k r2

k+1r
1
k+2

�1
kk+1b31b32

A1A2D3 + · · ·
)

|0〉H

+ Qk−2k+1

(
�1

kkr
1
k−1r

2
k r3

k+1

�1
k−1kb13b23

D1D2A3 + · · ·
)

|0〉H

+
�1

kk�
2
kk

�1
kk+1�

2
kk+2

r3
k+1r

1
k+2r

2
k+3Qkk+3A1A2A3|0〉H

− �1
kk�

2
kk

�1
k−1k�

2
k−2k

r3
k r1

k−1r
2
k−2Qk−3kD1D2D3|0〉H.

The omitted terms in the parentheses are obtained by symmetrization w.r.t. the Bethe roots.
Again one computes that upon taking the trace on both sides of the equation and invoking the
Bethe ansatz equations,

〈0|Ai |0〉H
∏
j �=i

bij = 〈0|Di |0〉H
∏
j �=i

bji

all terms vanish except the first one. This proves (46) for nB = 3. We leave the case for
general nB to a future calculation. Here we shall be content with supporting the conjecture
for nB > 3 by making contact with various functional equations for the eigenvalues; see (55),
(61), (89), (100) and (101).
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